

JHS-3i New Pillow Blocks

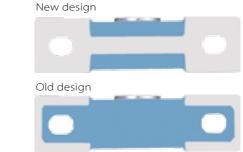
JHS-3i Pillow Blocks

3 improvements...

Optimized Performance Design – No Vibration + 30% stronger + 7% lighter
 New Seal Design – for High Performance Lubrication + extending Bearing Life
 Lithium Grease – High Load + Extreme Pressure + Water Resistant

With a legacy of Quality & Performance, Koyo Ball Bearing Units are the most reliable products when it comes to accuracy and excellent load resistance. Ball bearing units consist of a housing with an installed bearing. They are available in a variety of materials and housings allowing easy handling and installation. With the introduction of our new JHS-3i Pillow Block Housing you can experience the quality. Our new JHS-3i Pillow Block Housing offers very high load capacity and accuracy, self-aligning mechanism and optimal fit, superior sealing performance, easy lubrication, high rigid and strong housing and last but not least simple installation and handling. When customers experience our products, they experience quality.

3 Major Improvements -> 3i


With 3 major improvements in the performance design, sealing and grease, we can ensure that our JHS-3i Pillow Block Housing will have a:

- High load capacity and accuracy
- Easy lubrication

- Self-aligning mechanism and optimal fit
 Highly rigid and strong housing
- Superior sealing peformanceSimple installation and handling

1. New Optimized Performance design

Pillow Block Housing with Flat Bottom Face Containing No Recess The optimized performance design ensures a more secure and firm mounting of the pillow block on a frame. No vibration occurs because there is no clearance between the housing and the frame. The removal of conventional ribs of boths sides and the increase of bolt area improved the workabilty. This is an epoch-making new housing that has enabled a 30% increase in strength despite of the removal of the ribs and a 7% lower weight.

Pillow Block Structural Strength Comparison

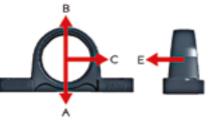


Fig. 1: pillow block optimized design

Pillow Block Static Fracture Load comparison (KN)											
	A B C E Wt(g)										
NEW P205	145	53	52	25	615						
OLD P205	108	53	38	19	660						

Fig. 2: Pillow block structural strength rating comparison

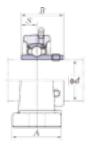
2. New Seal Design for high performance lubrication

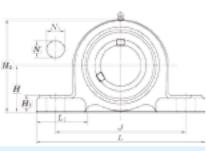
Fig. 3: New seal design for lubrication

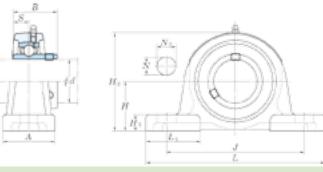
The new pressed seals have an inward facing lip which allows grease to flow back towards the balls and raceway during operation thereby improving lubrication performance and extending bearing life.

Unit/Insert Bearings, subject to new seal							
UC201~UC218	UCX05~UCX20	NA201~NA215					
UK205~UK218	UKX05~UKX20	NC204~NC212					

3. Upgrade in Lithium Bearing Grease


Upgrade in Lithium Bearing Grease 📫 📫 High Load - Extreme pressure - Water Resistant


Our ball bearing units are supplied with high quality Lithium Bearing grease and seals. The NLGI 2 lithium complex grease provides substantial improvements over general lithium soap based lubricants. It functions extremely well under a variety of high demanding operating conditions including wide temperature ranges, variable speeds, water contamination, vibration, extreme pressure, heavy -and shock loads. This Lithium grease is also compatible with the existing grease formula.


Comparison New and Old Pillow Blocks

Comparison Table of New and Old Pillow Block Bearing Units Dimensions

New (after the change)

Old (current version)

Unit No.	Туре	Shaft diame (mm)	ter					Dimens (mm)					
		d	Н	L	А	J	Ν	N ₁	Н,	H_2	L,	В	S
UCP201	New Old	12	30.2 30.2	127 127	38 38	95 95	13 13	18 18	16 12	60 60	36 38	31 31	12.7 12.7
UCP202	New Old	15	30.2 30.2	127 127	38 38	95 95	13 13	18 18	16 12	60 60	36 38	31 31	12.7 12.7
UCP203	New Old	17	30.2 30.2	127 127	38 38	95 95	13 13	18 18	16 12	60 60	36 38	31 31	12.7 12.7
UCP204	<mark>New</mark> Old	20	33.3 33.3	127 127	38 38	95 95	13 13	18 18	16 13	65 64	36 38	31 31	12.7 12.7
UCP205	<mark>New</mark> Old	25	36.5 36.5	140 140	38 38	105 105	13 13	18 18	16 13	70 71	38 43	34.1 34.1	14.3 14.3
UCP206	New Old	30	42.9 42.9	165 165	48 48	121 121	17 17	21 21	17 15	84 84	48 53	38.1 38.1	15.9 15.9
UCP207	<mark>New</mark> Old	35	47.6 47.6	167 167	48 48	127 127	17 17	21 21	18 16	95 93	47 51	42.9 42.9	17.5 17.5
UCP208	New Old	40	49.2 49.2	184 184	54 54	137 137	17 17	21 21	18 17	98 98	53 57	49.2 49.2	19 19
UCP209	New Old	45	54 54	190 190	54 54	146 146	17 17	21 21	20 17	106 106	55 60	49.2 49.2	19 19
UCP210	New Old	50	57.2 57.2	206 206	60 60	159 159	20 20	22 22	21 19	113 113	60 63	51.6 51.6	19 19
UCP211	<mark>New</mark> Old	55	63.5 63.5	219 219	60 60	171 171	20 20	22 22	23 19	125 125	65 70	55.6 55.6	22.2 22.2
UCP212	New Old	60	69.8 69.8	241 241	70 70	184 184	20 20	25 25	25 22	138 138	73 76	65.1 65.1	25.4 25.4
UCP213	<mark>New</mark> Old	65	76.2 76.2	265 265	70 70	203 203	25 25	30 30	27 25	150 150	78 78	65.1 65.1	25.4 25.4
UCP214	New Old	70	79.4 79.4	266 266	72 72	210 210	25 25	30 30	27 28	157 156	75 78	74.6 74.6	30.2 30.2
UCP215	New Old	75	82.6 82.6	275 275	74 74	217 217	25 25	30 30	28 28	162 162	78 80	77.8 77.8	33.3 33.3
UCP216	<mark>New</mark> Old	80	88.9 88.9	292 292	78 78	232 232	25 25	35 35	30 32	174 174	83 86	82.6 82.6	33.3 33.3
UCP217	<mark>New</mark> Old	85	95.2 95.2	310 310	83 83	247 247	25 25	40 40	32 32	185 185	87 90	85.7 85.7	34.1 34.1
UCP218	New Old	90	101.6 101.6	327 327	88 88	262 262	27 27	45 45	33 34	198 198	94 104	96 96	39.7 39.7

* Different dimension are indicated in red

Test Results "New Seal Design"

1. Dust resistance test

1.1 Test conditions

- (1) Test unit:
- (2) Seal:
- (3) Rotational speed:
- (4) Load:
- (5) Fine particle:

Lip of new shape 510 r/min Belt tension Abrasive

UCFL205

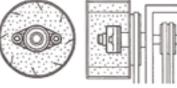


Fig. 4: Dust resistance test

1.2 Test results

Test	Test hours Results				
Due du et with a lin	1.000	After the test we have been investigating if fine particle has entered inside of the seal. It can be concluded that hardly any fine particle have been found.			
Product with a lip of new shape		Moreover, significant degradation of grease or abrasion of raceway grooves on the inner/outer rings and balls have not been found.			
	>2.000	No abnormality in the bearings have been found.			
Current product	500	Unusual noise generation and dust has entered			

2. Heat generation and torque test

Test conditions 21

(1)	Test unit:	UC208
(2)	Seal:	Lip of new shape
(3)	Rotational speed:	Various speeds (start to 3.300 r/min.)
(4)	Load:	No load

2.2 Test results

Table: Test results (rotating torque)	Unit: mNm							
Spec.	Rotational speed (r/min.)							
	start	500	1.000	1.500	2.000	2.500	3.000	3.300
Current product	70	170	180	210	200	200	210	210
Product with a lip of new shape	50	120	130	170	170	180	180	190

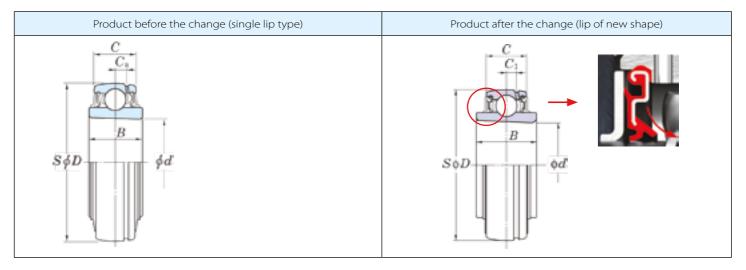
→ The test results show that the rotational torque of the new design is reduced compared to the old design.

3. Conclusion

(1) Dust resistance test

An effect due to the design change is considered to be otained because the test results shows the dust resistance is over two times larger than that of the current product.

(2) Rotating torque


The change of the seal design has resulted in a lower rotating torque.

1. Changing shape of seal

1.1 Changes made in the shape of the seal (applicable on UK series)

1.2 Changes made in the width of the inner ring and abolishment of H3 series of adapters subject to this design change

	Before the	e change		After the change						
		Applicable	adapter No.	Applicable adapter N						
Bearing number	Width B	(H23 series)	(H3 series)	Bearing number	Width B	(H23 series)	(H3 series)			
UK205	21	H2305X	H305X	UK205	24	H2305X	-			
UK206	23	H2306X	H306X	UK206	27	H2306X	-			
UK207	26	H2307X	H307X	UK207	30	H2307X	-			
UK208	27	H2308X	H308X	UK208	34	H2308X	-			
UK209	29	H2309X	H309X	UK209	36	H2309X	-			
UK210	29	H2310X	H310X	UK210	36	H2310X	-			
UK211	31	H2311X	H311X	UK211	40	H2311X	-			
UK212	33	H2312X	H312X	UK212	47	H2312X	-			
UK213	36	H2313X	H313X	UK213	47	H2313X	-			
UK215	40	H2315X	H315X	UK215	51	H2315X	-			
UK216	42	H2316X	H316X	UK216	55	H2316X	-			
UK217	44	H2317X	H317X	UK217	57	H2317X	-			
UK218	48	H2318X	H318X	UK218	63	H2318X	-			
UKX05	23	H2305X	-	UKX05	27	H2305X	-			
UKX06	26	H2306X	-	UKX06	30	H2306X	-			
UKX07	27	H2307X	-	UKX07	34	H2307X	-			
UKX08	29	H2308X	-	UKX08	36	H2308X	-			
UKX09	29	H2309X	-	UKX09	36	H2309X	-			
UKX10	31	H2310X	-	UKX10	40	H2310X	-			
UKX11	33	H2311X	-	UKX11	47	H2311X	-			
UKX12	36	H2312X	-	UKX12	47	H2312X	-			
UKX13	40	H2313X	-	UKX13	51	H2313X	-			
UKX15	42	H2315X	-	UKX15	55	H2315X	-			
UKX16	44	H2316X	-	UKX16	57	H2316X	-			
UKX17	48	H2317X	-	UKX17	63	H2317X	-			
UKX18	50	H2318X	-	UKX18	65	H2318X	-			
UKX20	54	H2320X	-	UKX20	69	H2320X	-			

Table 2 shows the changing points in our UK series. (width and adapter)

JTEKT Europe Bearings BV European Headquarter and Central Warehouse Markerkant 13-01 1314 AL Almere, The Netherlands ↓ +31 (0)36 538 3333 ■ info-eu@jtekt.eu

Koyo Italia SRL Territory: Italy Via G. Stephenson 43a 20157 Milano, Italy ↓ +39 (0)22 951 0844 ∞ koyo.italia@jtekt.eu

Koyo UK LTD Territory: United Kingdom & Ireland Whitehall Avenue, Kingston, Milton Keynes Buckinghamshire MK10 OAX, U.K. +44 (0)19 082 89300

🗙 sales@koyo.co.uk

Koyo Kullager Scandinavia AB Territory: Sweden, Norway & Finland Kanalvägen 5a 19461 Upplands-Väsby, Sweden +46 (0)85 942 1210 kks-info@jtekt.eu

Koyo Romania Representative Office Territory: Romania, Greece & Israel Str. Dr. Lister 24, ap1 Sector 5, cod 050543 Bucarest, Romania +40 (0)21 410 4182 carmen.berbecaru@jtekt.eu (Romanian territory) mariabianca.predut@jtekt.eu (Israelian & Greek territory)

JTEKT European Operations (Russia, Moscow office) Territory: Russia, Belarus & Kazakhstan 125493 Russia, Moscow, Avangardnaya str., 3, bld. 2, office 1505 +7916 5922 8972 alexey.fateev@jtekt.eu

Koyo Deutschland GMBH

Territory: Germany, Austria, Switzerland, Denmark, Turkey, Poland, Ukraine, Bulgaria, Czech Republic, Hungary, Serbia & Montenegro, Croatia, Slovakia, Slovenia, Bosnia & Herzegovina, Latvia, Estonia, Lithuania and Macedonia

Bargkoppelweg 4

22145 Hamburg, Germany

- **49 (0)40 679 0900**
- 🐱 info@jtekt.eu

Koyo France SA Territory: France, Algeria, Morocco & Tunisia 1 rue François Jacob 92500 Rueil-Malmaison Cedex +33 (0)14 139 8000 infokf@jtekt.eu

Koyo Iberica SL Territory: Spain & Portugal Centro de Negocios, Calle La Mancha no.1 oficina 1.2 28823 Coslada (Madrid), Spain +34 (0)91 329 0818 info-kib@jtekt.eu

Koyo Benelux Branch Office Territory: Belgium, The Netherlands & Luxembourg Markerkant 13-01 1314 AL Almere, The Netherlands +31 (0)36 538 3333 info.Koyo.Benelux@jtekt.eu

JTEKT Poland Branch Office 3. Maja 14 41-200 Sosnowiec, Poland ↓ +48 (0)32 746 7777 ∞ info-eu@jtekt.eu

WWW.koyo.eu < visit us at

Disclaimer: The contents of this publication are the copyright of the publisher and may not be (in part or in whole) reproduced or copied without prior written permission. Every care has been taken to ensure the accuracy of the information contained in this publication, but no liability can be accepted for any loss and/or damage as a direct or indirect consequence of use of the information contained herein. JTEKT reserves the right to make technical changes to the content of this publication